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A fast non-Fickian particle-tracking diffusion simulator
and the effect of shear on the pollutant diffusion process
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SUMMARY

This paper presents a fast method for the generation of non-Fickian particle paths within a particle-
tracking pollutant diffusion model based on a Fourier spectral representation of fractional Brownian
motion (fBm), a generalization of ordinary Brownian motion. Correlated diffusive components in a
particle-tracking algorithm are modelled using fBm increments that have long-range correlations over
numerous spatial and/or temporal scales; hence producing non-Fickian diffusion. A fast algorithm to
generate fBm and its increment by using its power spectral density S( f ) in a fast Fourier transform
algorithm is given. A general equation for the scaling of fBm within a velocity flow field with simple
linear shear is presented. An initial numerical study of the nature of fBm shear dispersion has been
conducted by incorporating fBm increments into a non-Fickian particle-tracking algorithm. It is shown
that the effect of simple (i.e. linear) shear on the diffusion process is to produce enhanced diffusive
phenomena with the longitudinal spreading of the plume scaling with exponent �1+H, where H is the
Hurst exponent used to describe fBm. Finally, a more complex shear zone at the entrance of a coastal
bay model is investigated using both a traditional particle-tracking method and the fBm-based method.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Non-Fickian diffusion is frequently observed in pollutant diffusion processes due to the
long-range correlations (Lagrangian memory effects) in velocity flow fields. These correlations
exist over large spatial scales. Traditional particle-tracking techniques model the diffusion
process using uncorrelated random displacements drawn from a Gaussian probability distribu-
tion [1–3]. This method leads to the size of the resultant diffusing cloud scaling linearly with
the square root of time since release, i.e. Fickian diffusion. In reality, diffusion processes are
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non-Fickian, with the size of the diffusing cloud scaling non-linearly with time since release
due to long-range spatial correlations.

Recently, a new technique has been suggested by the authors [4–7] for the simulation of
non-Fickian diffusion within a particle-tracking diffusion model. The technique employs
fractional Brownian motion (fBm), a class of random fractal functions [8] opened up by the
work of Mandelbrot and Van Ness [9], Mandelbrot and Wallis [10] and Mandelbrot [11] on
fractal geometry. fBm processes contain ‘memory effects’ owing to trends of correlated lags.
These correlations appear over all scales and allow for non-Fickian power-laws to be exhibited
by particle plumes within particle-tracking diffusion models in which fBm increments model
the diffusive steps [6,7]. fBms comprise a generalized family of random fractal functions
characterized by an index H, the Hurst exponent [12], which is related to the autocorrelation
properties of the function. For 0BHB1

2, there is negative correlation, for 1
2BHB1, the

correlation is positive, and H=1
2 is the special case of Brownian motion with zero correlation

(see Section 2). For a review of traditional particle-tracking models using uncorrelated
diffusive steps and its shortcomings, fBm and other fractal processes and their application in
science and engineering, the reader is referred to References [6,7] and the references cited
therein.

The layout of this paper is as follows. In Section 2, a review of one-dimensional fBm and
its use in simulating non-Fickian diffusion within a particle-tracking diffusion model is
outlined. Also in this section, the computational effort associated with integrating the fBm
function with finite memory is described. Section 3 provides a spectral representation of the
increments of one-dimensional fBm, which is less complicated than the spectral representation
of fBm itself. Owing to the stationarity of the fBm increments (fBm comprises a non-stationary
process), it is much more accurate, efficient and easier to simulate the increments; then fBm
with index H is obtained by summation of its increments with the same index. Recognizing the
spectral representation of fBm increments as the sum of sine and cosine functions, it is shown
how fBm can be simulated using fast Fourier transform (FFT) techniques. Using FFTs,
significant savings can be yielded in terms of the computational effort expended in integrating
the fBm function at each time step over a finite memory. Section 4 presents and discusses
example applications of the model to simulate pollutant diffusion within numerically generated
velocity fields. In this section both a simple, linear shear profile and a more complex non-linear
spatially varying velocity field are investigated. Finally, some concluding remarks are made in
Section 5.

2. THE fBm PARTICLE-TRACKING DIFFUSION MODEL

fBm, BH(t), introduced by Mandelbrot and Van Ness [9] is a continuous random function with
zero mean increments and variances, which scale as � t2H, where t is the time variable and H
is the Hurst exponent. fBm is expressed as

BH(t)=
1

G(H+1
2)
& t

−�

(t−s)H−1/2 dW(s) (1)
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where dW(s) represents increments of a standard Wiener process, and G(H+1
2) is a gamma

function introduced to insure that the fractional integral becomes an ordinary integral when
H−1

2 is an integer. fBm is a biased random process, where the bias comes about by simply
weighting each independent increment dW(s) by a factor of (t−s)H−1/2. Therefore, within a
sub-interval, the function BH(t), at any time t, may be found by adding up the increments up
to a time t, given the initial value BH(0) at the beginning of the sub-interval, which is similar
to the simulation of a random walk by the summation of uncorrelated increments taken from
a Gaussian distribution. Within a particular fBm sub-interval, past increments may be
correlated with future increments in the following way: given the initial value of BH(0) at t=0,
the autocovariance of past increments, DB1=BH(t)−BH(0) and DB2=BH(2t)−BH(t) at
times t and 2t respectively, is E{[DB1−E(DB1)][DB2−E(DB2)]}. If we then divide by the
variance of DBH, the correlation function of fBm increments may be written as

C(t)=22H−1−1 (2)

From Equation (2) we see that the correlation depends only on the exponent H and not on the
time variable t. Within a sub-interval, the function C(t) measures the correlation over period
t, where t can be of any length—i.e. events in one period may affect events in all subsequent
periods. For H=1

2, the correlation C(t) vanishes for all t and the process reduces to the special
case of ordinary Brownian motion, or random walk, consisting of a series of independent
increments. For H"1

2, then C(t)"0, independent of t, and the correlation structure of the
process shows a slow decay. This leads to what is called persistent (H\1

2) and antipersistent
(HB1

2) sub-intervals in the fBm process [4]. Insight into the nature of fBm may be obtained
by implementing such a process by computer simulation to generate the one-dimensional
process. The fBm integral expression given in Equation (1) is divergent as s�−�, which
makes the generation of fBm difficult. In order to generate the fBm process, Mandelbrot and
Van Ness [9] derived the following expression for BH(t), given the value of BH(t=0):

BH(t)−BH(t=0)=
1

G(H+1
2)
& t

−�

K(t−s) dW(s) (3)

Here the simple power-law kernel in Equation (1), (t−s)H−1/2, is replaced by the modified
kernel

K(t−s)=
!{(t−s)H−1/2}, 05s5 t

{(t−s)H−1/2− (−s)H−1/2}, sB0

This expression vanishes quickly enough as s�−� to make the expression properly define
the random function BH(t). In Addison et al. [6,7], a discretized approximation to the fBm
integral of Equation (3) using a finite limited temporal memory MDt was given, where MDt
is much larger than the time scale, NDt, of the problem under consideration. In practical
terms, it means that to generate N fBm steps, BH(t), we require N+M random steps taken
from a Gaussian or simpler probability distribution [8]. The larger the memory M used, the
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better is the resulting approximation to the fBm. In practice, M requires to be at least ten
times larger than N for a good approximation [8]. There is an obvious computational cost
involved in using the discretized expression given in Addison et al. [6] as each time step in
the fBm function in each spatial direction requires the summation of M previous steps.
This compared with simply adding on a single Gaussian random variable of known stan-
dard deviation in the Fickian (Brownian) particle-tracking model. To overcome the compu-
tational burden expended in integrating the fBm function with finite memory, herein we
simulate non-Fickian diffusive particle paths using a much faster method to generate fBm
increments using its spectral properties. The discrete computation of fBm increments of
length N requires N2 operations. In the next section we show that by expanding the
generating function of fBm increments in terms of sine and cosine functions, increments of
fBm can be calculated using a fast Fourier transform (FFT) algorithm, thereby achieving
considerable savings on computational time expended in integrating the fBm function. With
an FFT algorithm, the evaluation of fBm increments requires N log2 N operations to gener-
ate a series of N points.

3. SPECTRAL GENERATION OF fBm INCREMENTS WITH LONG-RANGE
CORRELATIONS USING FFT

A variety of methods has been suggested for the generation of fBm [13–16], however, these
methods are either inaccurate, produce inefficient approximations of fBm or are computa-
tionally very time consuming [14,17,32]. The Fourier filtering method is one such method
and is based on the spectral property of fBm. Its uses the Fourier transform (FT) to
generate a process that has the spectral density S( f )8 f (2H+1). However, as criticized by
Yin [17], the power-law property of the spectral density is derived by time averaging and is
therefore an approximation because fBm is non-stationary and does not possess a time-in-
dependent spectrum. Instead, Yin [17] proposes an accurate and efficient simulation al-
gorithm for one- and also multi-dimensional fBm based on the spectral representation of
fBm increments. As pointed out, fBm is non-stationary while its increment is stationary. All
previous methods of generating fBm deal directly with fBm itself, which makes the simula-
tions complicated and inaccurate because of fBm’s non-stationarity. Yin [17] suggests gener-
ating fBm increments, known as fractional Gaussian noises (fGn), which comprise a
discrete stationary process with power-law correlations at various spatial and/or temporal
scales; then fBm with index H is obtained by summation of its increments. The fBm
increment RH(t) is defined as

RH(t)=BH(t+Dt)−BH(t) (4)

When H=1
2, RH(t) is equivalent to dW(s) given in Equation (3) (i.e. uncorrelated Brown-

ian increments). Discrete fBm is obtained from Equation (4) as

BH(ti)=%
i

k

[BH(tk)−BH(tk−1)]=%
i

k

RH(tk−1) (5)
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That is, to simulate fBm BH(ti) at time ti with index H, the noises RH(tk) (k=1, . . . , i ) are
first simulated, then fBm with the same index is obtained using Equation (5). Equation (5)
reduces to the expression used to simulate random walk or regular Brownian motion when
H=1

2, RH(ti) represents the diffusive component per time step Dt, which is added to an
advection term in a particle-tracking algorithm [7] in which the random displacements have
long-range correlations. Using RH(ti), we can model non-Fickian diffusion with non-linear
scaling of the diffusion coefficient for various values of the Hurst exponent H. Depending
on the exponent H, the function RH(ti) can model superdiffusion (H\1

2), where the vari-
ance of the diffusing cloud increases faster than linearly with time or sub-diffusion (HB1

2)
in which the variance increases slower than linearly [8]. H=1

2 models regular Brownian
(Fickian) diffusion. The definition of the autocovariance function C(r) of a fGn process is
given as

C(r)=cov{RH(t), RH(t+r)}=E{[RH(t)−E(RH(t))][RH(t+r)−E(RH(t+r))]}

=E{RH(t+r)RH(t)}−E2{RH(t)} (6)

Derivation of the autocovariance function of fGn C(r) in terms of its variogram g(r) gives

g(r)=E{R(t)2}−E2{R(t)}−C(r) (7)

Using this relation and the Weiner–Khintchine theorem, then the power spectral density
S( f ) of one-dimensional fGn is given as [17–19]

S( f )= %
�

r= −�
C(r) cos(2prf ) (8)

where f denotes the frequency and r=0, 91, 92; −1
25 f51

2. The power spectral density
and autocovariance functions of fGn represent FT pairs. Given the power spectral density
function S( f ), we derive the following expression for RH(t) using the modified spectral
method of Shinozuka and Jan [23]. RH(t) is given as

RH(t)=
2 %
N/2−1

k= −N/2

[S( fk)Df ]1/2 cos(2pfkt+fk) (9)

where t=0, 1, 2, . . . , N ; S( f ) is the spectral density function given in Equation (8); N is
the total number of samplings in f ; Df=1/N is the interval of sampling; fk=kDf are the
values of f sampled; and fk are independent random angles uniformly distributed in [0, 2p ].
Expanding the cosine function in Equation (9) for the increments of fBm in terms of sines
and cosines, we obtain the following expression for RH(t):

RH(t)=
2/N %
N/2−1

k= −N/2

[S(k/N)]1/2�cos(fk) cos
�2pkt

N
�

−sin(fk) sin
�2pkt

N
�n

(10)
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where t=0, 1, . . . , N−1. Equation (10) represents the real part of a more general complex
random process X(t)=RH(t)+ iY(t). A complex FT algorithm can, therefore, be used to
construct the complex process X(t), from which the real-valued process RH(t) can be extracted.
Computation of RH(t) using FTs can be demonstrated as follows: take a general complex
number uk=
S cos(fk)+ i
S sin(fk), where 
S is a constant and k varies from −N/2 to
N/2−1. The discrete FT of uk is given by

Tn=
2/N %
N/2−1

k= −N/2

uk exp
�2p ikn

N
�

(11)

where n=0, . . . , N−1. (Note that 
2/N is equal to 1/
p when 2p is the total range and 1
2p

represents the sampling interval; here N is the total number of samplings.) The discrete FT
maps N complex numbers (the uks) into N complex numbers (the Tns). Equation (11) can also
be written as follows:

Tn=
2/N %
N/2−1

k= −N/2


S [cos(fk)+ i sin(fk)] ·exp
�2p ikn

N
�

=
2/N %
N/2−1

k= −N/2


S exp(ifk) ·exp
�2p ikn

N
�

=
2/N %
N/2−1

k= −N/2


S exp
�2p ikn

N
+ ifk

�
(12)

It is evident that Equation (12) can be calculated using a complex FFT algorithm [20,21] if one
inputs 
S cos(fk) as the real part and 
S sin(fk) as the imaginary part of complex data into
a complex FFT algorithm. The real part of Equation (12) (the output of the discrete FT) is
given by the following equation:

real(Tn)=
2/N %
N/2−1

k= −N/2


S cos
�2pkn

N
+fk

�
(13)

Expanding the cosine function of the right-hand side of Equation (13) we obtain

real(Tn)=
2/N %
N/2−1

k= −N/2


S
�

cos(fk) cos
�2pkn

N
�

−sin(fk) sin
�2pkn

N
�n

(14)

By making the analogy real(Tn)=real(X(t)) we observed that real(Tn) and RH(t) are identical
(where 
S [S( fk)Df ]1/2); therefore, if one inputs [S( fk)Df ]1/2 cos(fk) as the real part and
[S( fk)Df ]1/2 sin fk as the imaginary part of input complex data, then the real part of output
complex data is RH(t). Press et al. [22] provides an FFT algorithm to calculate the discrete FT
of N sample points hk, where k varies from 0 to N−1. In Press et al. [22], the discrete FT of
hk is given as

Tn=
2/N %
N−1

k=0

hk exp
�2p ikn

N
�

(15)
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where k=0, . . . , N−1. Equation (15) is for sample data points varying from k= −N/2 to
N/2−1. Therefore, to use the algorithm given in Press et al. [22], we let m=k+N/2, then
Equation (15) can be rewritten as

Tn=
2/N %
N−1

m=0

u(m−N/2) exp
�2p i(m−N/2)

N
�

(16)

where n=0, . . . , N−1. Substituting k for m in Equation (16) we obtain

Tn=
2/N %
N−1

k=0

u(k−N/2) exp
�2p ikn

N
�

exp(ipn)

=
2/N %
N−1

k=0

u(k−N/2) exp
�2p ikn

N
�

[cos(pn)+ i sin(pn)]

=
2/N %
N−1

k=0

u(k−N/2) exp
�2p ikn

N
�

(−1)n= (−1)n
2/N %
N−1

k=0

u(k−N/2) exp
�2p ikn

N
�

(17)

From Equation (11)

Tn=
2/N %
N/2−1

k= −N/2

uk exp
�2p ikn

N
�

(18)

or for the computation using the FFT algorithm in Press et al. [22], from Equation (17)

Tn= (−1)n
2/N %
N−1

k=0

u(k−N/2) exp
�2p ikn

N
�

(19)

The mapping of k= −N/2 to N/2 into k=0 to N−1 for the spectral density function S( fk)
is therefore given by

%
N/2−1

k= −N/2

[S( fk)Df ]1/2 %
N−1

k=0

[S( fk−N/2)Df ]1/2 (20)

Therefore, the algorithm given in Press et al. [22] can be used to calculate the fGn function
RH(t) given in Equation (9) by using the power spectral density function in the range
−1

25 fk5
1
2 computed in Equation (8). In this way the fGn components of fBm can be

generated and summed to produce fBm through Equation (5). The FFT method presented here
is a much faster, more accurate and more efficient method of fBm generation than the one
previously proposed by the authors [6,7]. Figure 1 shows the theoretical autocovariance
function of fGn computed using the definition given in Equation (6) and the simulated
autocovariance for fGn computed using the FFT method for H=0.35 and 0.85. The simulated
autocovariance is calculated using the average of 100 independent fGn realizations. It is
observed that for a large enough sample of realizations, the autocovariance structure of the
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Figure 1. Theoretical autocovariance of fGn and simulated autocovariance calculated using an average
of 100 fGn realizations: (a) H=0.35 and (b) H=0.85.
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simulated process matches the desired autocovariance structure very closely. In the next
section, the fBm increments are incorporated into a particle-tracking pollutant diffusion model
to investigate shear diffusion within the coastal zone.

4. fBm DIFFUSION AND SHEAR DISPERSION

It was shown in previous work by the authors [6,7] that by using multiple realizations of fBm
within a particle-tracking model, non-Fickian diffusion may be generated in which the
standard deviation, s, of the diffusing particle cloud scales non-linearly with time in a general
equation, given as

s= (2Dft)H (21)

where Df is a non-Fickian (fractal) diffusion coefficient, t is the time since release and H is the
Hurst exponent. (See Appendix A for an alternative definition.) Using an fBm particle-tracking
model, therefore, allows flexibility in the exponential diffusive scaling of the particle-tracking
model [4–8], achieved by simply varying the value of the Hurst exponent, which determines the
correlation of the fBm function. The following sub-sections consider the nature of shear
dispersion within an fBm particle-tracking model. (fBm dispersion within a constant velocity
field is given in Addison et al. [4].)

4.1. Simple shear dispersion: linear 6elocity profile

The rapid spreading of diffusing clouds within regions of marked velocity gradients is a
well-documented phenomenon known as shear dispersion. It accounts for much of the rapid
spreading of pollutants within the river, estuarine and coastal environments. Much investiga-
tive work of a theoretical and numerical nature has concentrated on the dispersion of point
sources in simple shear flows [24], which consists of a linear variation in the velocity profile
described by

V(y)=ax (22)

where a is the shear gradient. An example of a simple (i.e. linear) shear flow is illustrated in
Figure 2 for a shear gradient a=0.0003. If a point source of contaminant is released within
such a shear flow, then, for a Fickian cloud, we get the well-known result [24] for the rate of
spreading orthogonal to the flow

sx
2 =2Dt (23)

and along the direction of the flow given by

sy
2=2Dt+

2
3

a2Dt3 (24)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 145–166
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Figure 2. Velocity profile for simple shear.

For large times, Equation (24) reduces to

sy
2=

2
3

a2Dt3 (25)

Figure 3 contains the results of a pollutant shear dispersion simulation using the shear flow in
Figure 2. A traditional particle-tracking method (i.e. H=1

2) is used with D, the diffusion

Figure 3. Plot of ln(sx) and ln(sy) versus ln(t) for H=0.5, D=0.01, Dt=10, 1000 particles, 100 steps.
(In the figure, sx is denoted sigx and sy is denoted sigy.)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 145–166
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coefficient, set equal to 0.01 in the x- and y-directions (a typical value used in engineering
practice for estuarine flows). In the figure, the natural logarithm of standard deviation of the
transverse (sx) and longitudinal (sy) cloud patch is plotted against ln t. This is done for a
simulation consisting of 1000 non-reactive particles to represent the pollutant mass and, even
for this low number of particles, the slopes of the plots are very close to the expected
theoretical scaling exponents of 1

2 and 3
2, from Equations (23) and (25) respectively. Equation

(23) and (25) can be generalized to the scaling of fBm within shear flows. Using fBms, the rate
of spreading orthogonal to the mean flow direction would now take the form [8]

sx= (2Dft)H (26)

We hypothesize herein that, since the rate of spreading of the pollutant cloud is a combination
of the influence of the linear shear dispersion and exponential (H) fBm diffusion, the spreading
along the mean velocity direction can be generalized from Equation (25) as

sy
2=Ca2(2Dft)2Ht2 (27)

that is

sy=
Ca2HD f
Ht1+H (28)

where C is a constant and Df is the fractal diffusion coefficient. Equation (28) shows that the
effect of simple shear dispersion on the longitudinal dispersion process using fBm is an
enhanced diffusive spreading of the particle cloud scaling with time t as � t1+H. Equations
(27) or (28) reduce to Equation (25) when H=1

2, with C=1
3 and Df=D, the normal Fickian

diffusion coefficient. Taking the natural logarithms of both sides of Equation (28) then

ln(sy)= ln(
Ca2HD f
H)+ (1+H) ln(t) (29)

Substituting the values of a=0.0003 and Df=0.01 into Equation (29) we obtain

ln(sy)= ln(0.0003
C)+H ln(0.02)+ (1+H) ln(t) (30)

Thus, a plot of ln(sy) against ln(t) should give a curve of slope 1+H and an intercept Ay at

Ay= ln(
C)−8.1117−3.9120H (31)

Hence C can be obtained. Figure 4(a)–(d) show the results of four fBm particle-tracking
simulations of particle clouds (1000 particles) spreading in shear flows using Hurst exponents
of H=0.6, 0.7, 0.8 and 0.9. (We restrict ourselves to superdiffusive Hurst exponents as we
know from experimental studies [26–28] that ocean drifter trajectories are superdiffusive in
nature.) We see from the plots that orthogonal to the flow sx scales as in Equation (26). This
behaviour is as expected, as the velocity gradient plays no part in the spreading of the cloud
in this direction and hence the patch spreads in this direction as for an fBm particle cloud

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 145–166
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(Equation (21)) within a uniform flow field. The standard deviation of the diffusing cloud
within the flow field in the longitudinal direction y scales as sy� t1+H, as predicted by
Equation (28). Table I shows the values of H input to the fBm model together with both the
values of H and Ay obtained respectively from the slopes and intercepts of the logarithmic

Figure 4. Plots of ln(sx) and ln(sy) versus ln(t) for (a) H=0.6, (b) H=0.7, (c) H=0.8, (d) H=0.9,
D=0.01, 1000 particles, 100 steps. (In the figure, sx is denoted sigx and sy is denoted sigy.)
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Figure 4 (Continued)

plots of sy against t given in Figure 4(a)–(d). The realized Hs are used in conjunction with the
realized Ay values to obtain a value of C using Equation (31). These are given in the bottom
row of Table I. The value of C obtained for each H given in Table I appears to be reasonably
close to the theoretical value of 1

3 for H=1
2.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 145–166
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Table I. Input H values to the fBm particle-tracking model together with realized Ay and H values from
Figures 3 and 4 and corresponding values of C.

0.5 0.6H (input) 0.7 0.8 0.9

0.518 0.620 0.713H (realized from plots) 0.803 0.883
−10.717 −11.221 −11.580Ay (realized from plots) −11.877 −12.057

0.314 0.255 0.257C (using realized H and Ay in 0.287 0.375
Equation (31))

4.2. Numerical bay simulation

Here, we investigate pollutant diffusion in a more realistic shear pattern. Figure 5 shows the
top surface of a numerically generated velocity vector field of an idealized coastal bay model.
(This model is similar to the one used in a previous study by the authors [6], presented in this
journal, more information regarding this plot is given in Qu [37].) The main north–south flow
generates a recirculation vortex in the bay region. The shear zone region at the bay entrance
(between the main flow and the recirculation zone) contains rapidly increasing velocities.
Figures 6 and 7 contain the vertical and horizontal velocity profiles respectively across this

Figure 5. Coastal bay model, velocity vector plot.
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Figure 6. Vertical velocity profiles V(x) at various locations across the bay entrance.

Figure 7. Horizontal velocity profiles U(x) across the bay entrance.

region (10005x51400 m). The changing directions of the vector field, especially near the top
and bottom of the shear region, produce a much more complex shear dispersive process than
the simple linear shear considered in the section above. The vertical velocity profiles shown in
Figure 6 all show a similar non-linear decrease in the velocity from the main flow (of just
under 0.6 m s−1 to near zero values). As expected, the profiles nearest the top and bottom of
the bay entrance have the highest shear gradients due to the near zero vertical velocity values
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close to the bay boundaries. Figure 8 shows plots of log(s) against log(t) for spreading
particle clouds within the shear zone region released at three different point locations at the
top of the bay; namely (1250, 2775), (1300, 2775) and (1350, 2775). The plots contain the
spreading in both the x- and y-directions and both for values of H equal to 0.5 (Fickian
model—left-hand column) and 0.8 (non-Fickian, fBm model—right-hand column). Both
the realized exponent and diffusion coefficients are calculated from the gradient and inter-
cepts of these plots. There is an obvious kink in the top plots in both Figure 8(a) and (b)
relating to release point (1250, 2775), where the power-law behaviour of the diffusion
changes markedly. The authors believe that this marks a change between the cloud being
located solely within the shear layer for earlier times and being spread out across the mean
north–south channel flow, shear zone and the recirculation zone at later times. Hence, the
gradient over the earlier time is taken as the shear layer power-law. Figure 9 plots the
longitudinal and transverse scaling exponents Hx and Hy, computed for the shear dispersion
of clouds released at the three points at the top of the shear zone. The values are also
given in Table II. The power-law scaling exponents, Hx and Hy, associated with the spread-
ing clouds across the bay shear zone are not simple (i.e. linear) functions of the input
Hurst exponent H (as was shown above for the case of simple shear). It is interesting to
note, however, that an increase in Hy is associated with a corresponding decrease in Hx. In
addition, there is an occurrence of sub-diffusive values of H for the Fickian model. Such
sub-diffusive values are sometimes seen in natural estuarine flows.

5. CONCLUDING REMARKS

Over recent years it has become clear that fBm offers a powerful descriptive tool for a
variety of spatial and temporal phenomena [30,31]. Herein we have concentrated on its
ability to model a certain class of temporal diffusion (defined by Equation (21)) and used it
to model non-Fickian diffusive processes in the coastal zone [32]. However, the results
presented offer an insight into this class of random fractal function, which has applications
elsewhere (see, for example, Reference [30] and the references contained therein).

The equation used to simulate fBm is divergent as time t��, hence most fBm simula-
tion algorithms are either inaccurate and produce inefficient approximations to fBm, or are
computationally very time consuming. A fast, accurate and efficient method for the genera-
tion of fBm within a particle-tracking diffusion model has been detailed herein. The method
uses the spectral characteristics of the derivative of fBm within an FFT algorithm.

An initial numerical study of the nature of shear dispersion for fBm diffusion has been
conducted and an equation has been presented for the scaling of fBm shear dispersion.
From the numerical results, it is confirmed that, for simple shearing, the standard deviation
of the diffusing cloud scales with time t along the flow velocity direction with an exponent
equal to 1+H, where H is the Hurst exponent. In addition, from our results we speculate
that the coefficient C in Equation (27) is a constant over all H equal to 1

3. However, further
numerical work using much larger particle clouds is required to confirm these findings. (In
the study presented herein, only 1000 particle clouds were used.)
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Figure 8. Plots of log(sx) (a) and log(sy) (b) against log(t) for dispersing particle clouds in the bay shear
zone (release points (Xp, Yp) given in plots.
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Figure 8 (Continued)
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Figure 9. Realized exponential scalings from the dispersing particle clouds released from various
locations at the top of the bay.

Table II. The realized exponential scaling within the shear zone for H=1
2 and

0.8 particle clouds released at various x locations and y=2775.

Hx Hy

H=1
2

1.1730.510x=1250
1.333x=1300 0.370
1.679x=1350 0.285

H=0.8
0.813 1.616x=1250

x=1300 1.6210.647
2.0650.509x=1350

The nature of shear dispersion across the entrance of a coastal bay model was also
investigated. Both Fickian (H=1

2) and non-Fickian (H=0.8) particle clouds were released at
various locations in this more complex, and realistic, shear region. The results showed a
marked sensitivity of the exponential scaling of the resulting shear dispersion to the release
point of the cloud. In addition, increases in scaling with the mean flow were coupled with
decreases in the orthogonal direction of flow; and in some cases sub-diffusive scaling was
found.

Inclusion of fBm within a particle-tracking model leads to more flexibility in the exponential
scaling allowed in the simulation. This paper contains details of work in progress by the
authors to develop the technique. Further work will include investigation of shear dispersion
using much larger particle clouds combined with a theoretical study based on the work of
Foister and Van Den Ven [24] using fBm scaling. In addition, work has recently been initiated
to use the fBm technique to model datasets obtained from a series of coastal dye studies [25].
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This work requires an extension of the fBm particle-tracking method to a full three-
dimensional model of the estuarine flow fields. It would also be interesting to extend the
particle-tracking model developed by the authors to atmospheric dispersion, especially within
the urban environment where alternative models, e.g. Gaussian plume models [33] and their
variants [34], find it difficult to cope with the complex topologies and associated flow fields. In
such cases Lagrangian stochastic particle-tracking models are beginning to win favour [35,36].

ACKNOWLEDGMENTS

The authors would like to thank Dr G. Pender and Ms Sharon Sloan of Glasgow University for the
surface velocity vector field of the coastal bay model used in Section 4.

APPENDIX A. AN EFFECTIVE FOKKER–PLANCK EQUATION FOR fBm
DIFFUSION

Recent work [7] by the authors has related fBm diffusion to an effective Fokker–Planck
equation [29] to describe non-Fickian or anomalous diffusion given as

(P(BH, t)
(t

=De(t)
(2P(BH, t)
(BH

2 (A1)

where De(t) is the effective diffusion coefficient and P(BH, t) is the probability density of
finding a Brownian particle at displacement BH at time t. It can be seen that, for a
time-independent diffusion coefficient (i.e. for De(t)=D), Equation (A1) is equivalent to the
classical diffusion equation described by ordinary Brownian motion. The diffusive scaling or
standard deviation through time t of a diffusive process undergoing fBm non-Fickian diffusion
can be defined as

s=
2D %ft
H (A2)

where D %f is a non-Fickian (fractal) diffusion coefficient (of different value to Df in Equation
(21)). Equation (A2) is a generalization of a Fickian or Brownian diffusive scaling. The
effective Fokker–Planck equation given in (A1) can be rewritten using Equation (A2) as

(P(BH, t)
(t

=2HD %ft2H−1 (
2P(BH, t)
(BH

2 (A3)

i.e De(t)=2HD %ft2H−1. The solution of Equation (A3) with initial condition P(BH, 0)=d(BH)
(where d is the Dirac delta function) for an instantaneous point source is

P(BH, t)=
2


4pD %ft
2H

exp
� −BH

2

4D %ft2H

�
(A4)
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which represents the probability density function of finding a Brownian particle at time t at a
displacement BH from its starting point. Equation (A4) is the non-Fickian scaling (i.e. variance
not proportional to time) of a Gaussian probability density function through space. Note that
Equation (A2) is a slightly different format to Equation (21), although both Df and D %f are
constants. We used the form of Equation (21) for the discussion in Section 4 as it results in a
constant value of C=1

3.
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